MATH 2060 Interial 12

Section 9.3 Q1 Test the following series for convergence and for absolutely convergence $(d) \sum_{n=1}^{\infty} (-1)^{nt1} \frac{\ln n}{n}$ $\frac{(c)}{\sum_{n=1}^{\infty}} \frac{(-1)^{n+1} n}{n+2}$ Sol (c) Let $a_n = \frac{(-1)^{n+1}n}{n+2}$ Then lim Oran = - | and lim Oranti = | n=>00 n=>00 Therefore, liman does not converge to 0, which implies the sories Zan is divergent by n-th term test (d) Let an= (-1)^{nt1} Inn and Zn= Inn Write f(x)= In x and note that $f'(x) = \frac{1 - \ln x}{x^2} < 0, \forall x > 4$ It follows that In is decreasing for n>4 and lim In=0 By the Alternating Series Test, Ian is convergent However, Ian = Inn > n, Ynz1 Since I' is divergent and by the Comparison Test, Zlant is divergent Therefore Zan is not absolutely convergent

Servin 9.4
Q5 Show that the radius of convergence R of the paver
corios
$$\mathbb{Z}a_{n}A^{n}$$
 is given by $\lim_{n \to \infty} \left|\frac{a_{n}}{a_{n+1}}\right|$, whenever this limit exists
Sol: Let $L = \lim_{n \to \infty} \left|\frac{a_{n}}{a_{n+1}}\right|$
The existence of the limit is allowed for $L \in L0.100$]
Case O: When $L \in (0, t \times 0)$. for $|X| < \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_{n+1}}\right| = L$
 $\lim_{n \to \infty} \frac{|a_{n+1}A^{n+1}|}{|a_{n+1}A^{n+1}|} = |X| + \lim_{n \to \infty} \left|\frac{a_{n+1}}{a_{n+1}}\right| < L + \frac{1}{L} = 1$
Similarly for $|X| > L$, we have $\lim_{n \to \infty} \frac{|a_{n+1}A^{n+1}|}{|a_{n}A^{n+1}|} > 1$
By the Ratio Test, $\mathbb{Z}a_{n}A^{n}$ is convergent for $|X| < L$ and
 $\lim_{n \to \infty} \frac{|a_{n+1}A^{n+1}|}{|a_{n+1}A^{n+1}|} = |a_{n+1}| + \frac{1}{|a_{n+1}A^{n+1}|}$
Case Q: When $L = 0$, $\forall |X| > 0$
Then $\left|\frac{a_{n}A^{n}}{|a_{n+1}A^{n+1}|}\right| = \left|\frac{a_{n}}{|a_{n+1}|}\right| + \frac{1}{|X|}$
Since $\lim_{n \to \infty} |a_{n+1}| = 0$, we can find a large number $N > 0$
such that $\left|\frac{a_{n+1}}{|a_{n+1}A^{n+1}|}\right| < ||f_{n+1}| = 1$
There fore, $\left|\frac{a_{n+1}}{|a_{n+1}A^{n+1}|}\right| < ||f_{n+1}| = 1$
There fore, $\left|\frac{a_{n+1}}{|a_{n+1}A^{n+1}|}\right| < ||f_{n+1}| = 1$
There fore $||a_{n+1}A^{n+1}| < ||f_{n+1}| = 1$
There fore $||a_{n+1}A^{n+1}| < ||f_{n+1}| = 1$
 $\lim_{n \to \infty} ||a_{n+1}A^{n+1}| < ||f_{n+1}| = 1$
 $\lim_{n \to \infty} ||a_{n+1}A^{n+1}| < ||f_{n+1}| = 1$
 $\lim_{n \to \infty} ||a_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < 1$
 $\lim_{n \to \infty} ||a_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < 1$
 $\lim_{n \to \infty} ||f_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < 1$
 $\lim_{n \to \infty} ||f_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < 1$
 $\lim_{n \to \infty} ||f_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < ||f_{n+1}A^{n+1}| < 1$
 \lim_{n

It follows that the radius of convergence R=L=0

Case (3) When
$$L = t\infty$$
, fix any real number (X s.t. $|X|>0$
 $\lim_{n\to\infty} \left|\frac{a_{ntt} X^{ntl}}{a_n X^n}\right| = |X| \cdot \lim_{n\to\infty} \left|\frac{a_{ntt}}{a_n}\right| = |X| \cdot 0 = 0$
By the Ratio Test, $\Xi a_n X^n$ is convergent
Moreover, for the case $X=0$, $\Xi a_n X^n \equiv 0$ is convergent
Ht follows that $\Xi a_n X^n$ is convergent for any $X \in \mathbb{R}$, then the
reading of convergence $R = L = t\infty$

Section 9.4 Q6 Determine the radius of convergence of the series Zanx, where an is given by $(G) \frac{1}{n^n} \qquad (C) \frac{n^n}{n!}$ Sol: (A) linsup $\left(\left| \frac{1}{h^{n}} \right|^{\frac{1}{n}} \right) = \lim_{n \to \infty} \sup_{n \to \infty} \frac{1}{n} = 0$ Then R= +00 (C) $\lim_{n \to \infty} \left| \frac{\alpha_n}{\alpha_{ntl}} \right| = \lim_{n \to \infty} \left| \frac{n^n}{n!} \frac{(ntl)!}{(ntl)^{ntl}} \right|$ = lim $\left(\frac{n}{ntI}\right)^{n}$ $= e^{-1}$ It follows from Q5 that R=et

Section 9.4

11. Prove that if f is defined for |x| < r and if there exists a constant B such that $|f^{(n)}(x)| \le B$ for all |x| < r and $n \in \mathbb{N}$, then the Taylor series expansion

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

converges to f(x) for |x| < r.

Sol: By Taylor's Theorem (Thm 6.4.1),
$$\forall N \in IN$$
,
 $\forall |X| \leq r$, there exists c between o and X , $|c| \leq |X|$, s.t.
 $|f(X) - \sum_{n=0}^{N} \frac{f^{(n)}(o)}{n!} |X^n| = |\frac{f^{(MH)}(c)}{(NH)!} |X^{NH}| \leq \frac{B}{(NH)!} |X|^{NH} \leq B \frac{Y^{(NH)}}{(NH)!}$
for some constant B
Take $A_n = \frac{r^n}{n!} > 0$, note that
 $\lim_{n \to \infty} \frac{A_{nH}}{a_n} = \lim_{n \to \infty} \frac{Y}{n!} = 0$, which implies A_n is decreasing to 0
 $|H_{BNC}e$, $\lim_{N \to \infty} |f(X) - \sum_{n=0}^{N} \frac{f^{(n)}(o)}{n!} |X^n| = 0$,
which exactly gives the convergence of the Taylor expansion